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The Reconstruction of the Relative Phases and
Polarization of the Electromagnetic Field

Based on Amplitude Measurements
D. B. Nguyen and Svend Berntsen

Abstract—This paper addresses the problem of determining

the relative phases among the components of a monochromatic

electromagnetic field at a single point based on amplitude

measurements only. This problem arises in many practical

situations, from the determination of the polarization char-

acteristics of an antenna in its near field to the design of elec-

tromagnetic field probes that provide phase information with-

out the need for synchrcmization leads. In this paper, we answer

the following questions: 1) How is the phase information recon-
struction from amplitude measurements? 2) Do amplitude mea-

surements contain enough information to reconstruct the phases

uniquely? 3) How many amplitude measurements are re-

quired? and 4) In what directions must the amplitude mea-

surements be taken to ensure that the reconstructed phases are

unique? To answer these questions, we propose and solve a

more general problem in n dimensions, the special case where

n = 3 being the solution to the problem above.

1. INTRODUCTION

IN MANY practical situations, one needs to know the
relative phases among the components of a sinusoidally

time-varying vector, in addition to their amplitudes. The
determination of the polarization characteristics of an an-
tenna, for example, requires that the relative phases as
well as the amplitudes be measured. A commonly used
procedure is to find the direction along which the pro-
jected amplitude is zero; the polarization ellipse then lies
in the plane perpendicular to this direction, This proce-
dure requires many measurements. Further measurements
are needed in this plane to determine the characteristics
of the ellipse. The relative phases are obtained using a
synchronizing lead to provide a reference time-base; the
relative phases are then computed from time-delay mea-
surements. These measurements pose practical problems
at the high frequent y limit. Relative phases among the
components of a sinusoidally time-varying vector are also
needed in determining the source direction of plane waves,
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and in these situations, there are no synchronizing leads.
Measuring time delay of the components with respect to
a selected one is unreliable in practice. In quantum sys-
tems, the amplitudes are related to the probability of find-
ing a particular value of a quantum number such as spin
in a particular direction in 3-space. The relative phases in
this case give the relative orientations of different states
in the system’s Hilbert space and give rise to interference
behavior. In this extreme example, the relative phases
cannot be measured directly (there is no quantum ‘‘syn-
chronizing lead”) but the probabilities can be.

Motivated by these and other practical considerations,
we formulate and solve a general problem of relative-
phase reconstruction using amplitude measurements only.
In this paper, we answer the following questions: 1) IHow
is the phase information reconstructed from amplitude
measurements? 2) Do amplitude measurements contain
enough information to reconstruct the phases uniquely? 3)
How many amplitude measurements are required? and 4)
In what directions must the amplitude measurements be
taken to ensure that the reconstructed phases are unique?
Question 3) has no obvious answer because the relative-
phase reconstruction from amplitudes is a non-linear pro-
cess. Thus, in n dimensions, there are (n – 1) reltative
phases among the components of a sinusoidally time-
varying vector, but one cannot “automatically” conclude
that one needs (n – 1) amplitudes (which is clearly false
for two dimensions: three amplitude measurements are
needed to determine one relative phase between the mw
components of the vector). The problem is as follows.

A real vector X in n dimensions whose components are
sinusoidally varying with time at a fixed frequency c~anbe
represented by an n-dimensional complex vector Zej@f
whose real part is X. Each of the n components of Z is a
complex number with an amplitude and a phase angle. In
different real coordinate systems, the components of X
transform linearly, but the components of Z are not trans-
formed by the same change-of-coordinate transfortni~tion,
and the amplitudes of Z transform nonlinearly in general.
Only when X has linear polarization do the components
of Z transform linearly (using in that case the same l[inear
transformation for the components of X). For example,
in two dimensions, a real vector X = (5 cos cot,3 sin cot)
is represented by Z = (5, 3e ‘j”’z). In another coordinate
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system rotated by 90 degrees, the linear transformation is

()o –1
L=

10”

Under this transformation, Xbecomes X’ = XL = (3 sin
at, – 5 cos cot) with complex representation Z‘ =
(3e ‘JU12, 5eJ~). Clearly, the amplitudes of the compo-
nents of Z and Z‘ are not related by the same linear trans-
formation L. It will be shown subsequently that the am-
plitudes of the components of Z transform non-linearly in
general. It is because of this nonlinearity that the phase
information can be retrieved from amplitude measure-
ments in different directions.

For the special case n = 1, where polarization is not
significant, the problem has been solved, and found to
have practical applications [1]-[4]. These solutions, how-
ever, have no immediate generalization to dimensions
higher than 1. It is desirable to have the solution for the
case where the dimension n is a positive integer, and in
particular, for the case where n = 3.

This paper describes a method to reconstruct the rela-
tive phases of the components of Z (and therefore of X)
based on the amplitude measurements of its n components
in an orthogonal coordinate system and at most rt(n –
1)/2 additional amplitude measurements in different di-
rections, making a total of at most n(n + 1)/2 measure-
ments. The authors will show the necessary and sufficient
condition on these additional directions to ensure unique-
ness of the phase and polarization reconstruction for any
arbitrary vector X. The result of this phase reconstruction
is the complete characterization of the polarization of X
except for chirality. That is, with amplitude information,
we can determine the polarization ellipse, but not the
sense,

II. THE FORMULATION OF THE PROBLEM

Let X be a real vector in n dimensions whose compo-

nents are sinusoidally varying with time and have arbi-

trary (unknown) phases. Let A~, o “ o , A. be the ampli-
tudes of the components of X in one coordinate system,
and let Bl, “ “ . , B~ be the amplitudes of the projection
of X in k additional directions described by unit vectors
N1,NZ,” ””, N~. The problem is to find the relative phases
among the components of X and characterize the polar-
ization (i. e. the time-dependent behavior of X). How
many amplitude measurements B1, “ . . , B~ in addition
tothe A1, ””., A,l are required to reconstruct the polar-
ization uniquely? How does one choose the unit vectors
NI, NZ, ”.., N~ to ensure unique reconstruction of the
polarization ellipse for arbitrary X?

The solution to the above problem is concisely stated
in the next section after the formulation of some prelim-
inary concepts and the solutions to the following inter-
mediate problems.

1. 7he Polarization of a Complex Vector in n Di-
mensions: Let Z be a complex vector in n dimensions
whose components are arbitrary complex numbers. Let X

be defined by

X = Re {Zejm’}.

The polarization of Z is defined by the time-dependent
behavior of X. It has been shown [5] that for an arbitrary
finite integer n greater than 1, and for any arbitrary com-
plex vector Z, the locus traced in time by X must be a two
dimensional ellipse (with circle and straight line segment
being degenerate cases) centered at the origin. (This re-
sult was also obtained for the special case where n = 3
by Deno and Zaffanella [6] in 1978). The major and minor
axes of the ellipse are described by the following proce-
dure:

Let the complex vector Z with components Zi be

Zi = Ai exp (jPi).

The semi-major axis V and semi-minor axis R of the el-
lipse have components Vi and Ri defined by [5]

~ = A, COS (@t – ~) (1)

and

Ri = Ai sin (pi – ~) (2)

where

* = ~ arg (Z’Z).

Since the polarization has been shown [5] to be two-di-
mensional for arbitra~ n greater than 1 and for arbitrary
Z, the handedness (or chirality) of the polarization is not
unique given the amplitude information for n greater than
2. This is because in spaces of dimension three or higher,
a two-dimensional ellipse with a clockwise sense on the
boundary will become one with a counterclockwise sense
on the boundary when viewed from the other side. Only
in a two dimensional world is there no “other side, ” and
chirality in that case is theoretically meaningful. This ex-
plains why the reconstructed polarization described later
is complete except for chirality in general.

In summary, when n > 1, the time-dependent real vec-
tor X = Re {Zej’”f} traces out a two-dimensional ellipse
with its major and minor axes described by the two real
vectors V and R.

2. The Magnitude of the Sinusoidally Time-Varying
Projection of X in an Arbitrary Direction: Let Z be the
complex vector related to X by X = Re {Ze~@t} as before.
Let V and R be the major and minor axes of the ellipse
constructed from Z as described previously. Let the ar-
bitrary direction be specified by a unit vector N, The am-
plitude and phase of the projection of X in the direction N
can be found as follows:

X(u) = V cos u + R sin u, t35u527r.

Projected on the direction N, this ellipse becomes

X~(u) = (V, N) cos u + (R, N) sin u, o<u<27r,
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where (V, N) denotes the dot product of V and N. The
maximum value of X~, denoted by C, is

()(R, N)
c= (V, N) cos tan-] —

(V, N)

()

(R, N)
+ (R, N) sin tan-l —

(V, N) ‘

which becomes

C = ~{(V, N)}z + {(R. N)}*. (3)

This is the amplitude of the projection of X in the direc-
tion N.

In summary, given a real vector X whose components
are sinusoidally varying with time, and a unit vector N,
one can compute the magnitude of the (sinusoidally time-
varying) projection of X in the direction N. Or more gen-
erally, given k directions specified by the unit vectors NI,
N2, ””” , N~, the above analysis produces the magnitudes
C1, C2, ”””, C~ of the projections of X in the k direc-
tions.

III. THE SOLUTIONTO THE PROBLEMOF PHASE AND
POLARIZATIONRECONSTRUCTION

Let A be a real vector with components A~, . “ o , A.
which are the amplitudes of the sinusoidally time-varying
components of a real vector X in one coordinate system.
Let B be a real vector with components BI, o “ “ , B~ which
are the amplitudes of the components of X in k directions
specified by unit vectors N1, N2, . . . , N~.

We will solve the phase and polarization reconstruction
problem using nonlinear optimization as follows: We be-
gin by guessing the relative phases 92, p3, “ “ “ , p. of
the components of X relative to PI, which is set equal to
zero. These phases are combined with the given ampli-
tudes Al, “ . “ , An to form a complex vector Z’. To fa-
cilitate the statement of the solution to the phase and po-
larization reconstruction, one formalizes this construction
of Z‘ by defining a function K~ as follows:

‘o’

P*

%

\: Pm

From this complex vector Z’, one computes the real vec-
tors V and R as described in Section II-1. Using these two
vectors and the k given unit vectors N], N2, “ - “ , N~, one
computes the magnitudes Cl, C2, - - 0 , ck according to
Section II-2. Let C be a vector whose components are the
magnitudes Cl, C2, “ . “ , C~. This vector C is compared
with the given vector B, and the error, denoted by HB(C),
is

[

1/2

HB(C) = ,~~, (B~ - C~)2] .

A solution to the Phase and Polarization Reconstruction
Problem is found by nonlinear minimization of the com-
posite function L = HB 0 KA over the 92, p3, “ - . , p,, for
a given A and B. Theoretically, with no errors in the spec-
ification of the amplitudes A and B, the minimum value
of L would be precisely zero. In practice, when A and B
are experimentally measured, the minimum value of L,
not necessarily zero, is called the Residual, It serves as
an indication of how well the vectors A and B actually
describe a physically realizable polarization state for some
vector X.

IV. THE NECESSARYAND SUFFICIENTCONDITIONFOR
THE UNIQIJENESSOF THE PHASE AND POLARIZATICJN

RECONSTRUCTION

It is desirable to know whether or not the solution de-
pends on the initial choice of phases. The purpose of this
section is to answer this question by finding the necessary
and sufficient condition for the uniqueness of the recon-
struction in n dimensions. This condition will dictate the
choice of the directions in which the amplitudes are mea-
sured.

Let Q be a complex vector whose real part is V and
whose imaginary part is R. That is, Q = V + jR. Equa-
tions (3) now becomes C = I(Q, N) 1, or more generally,
for different unit vectors N1, N2, “ - - , Nk,

Cm = I(Q, Nm)l. (4)

From (1) and (2) defining V and R, one has

L)-
Al e~(q’‘*)

A2 e~(P2-‘)
Q=V+jR= . ze -j+

.

\ An eJ(qn-‘) /

Substituting this expression into (4), one obtains

Cm = I(Z, Nm)l.

Therefore,

(5)C* = (z, N~)* (Z, N~),m

where the superscript * denotes the complex conjugation
of the preceding quantity.

Since this section is concerned with the uniqueness and
not the existence of the solution, let us assume that at least
one solution exists, That is, for a given set of amplitudes
A~, A*, “ “ “ ,A~, Bl, B2, . “ . , Bk, and a giVen Set Of UIIit

vectors Nt, N*, s “ t , Nk, there exists a set of phases such
that the computed magnitudes Cm in (4) are equal to the
given magnitudes B~, m = 1, 2, “ “ “ , k. Equivalently,
there exists at least one complex vector Z whose colrnpo-
nents have the given magnitudes A 1, A2, ““ “ , A,, such
that

B2 = (Z, N~)*(Z, N~),m m=l,2, ”””, k. (6)

Given one solution to (6), one can always obtain other
solutions by complex conjugating Z, by multiplying Z by
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e]b for any arbitrary real 6, or by adding a multiple of2~
to any one of the phases. First, complex conjugating Z
causes all phases of its components to change sign. Equa-
tions (1) and (2) show that changing the signs of the phases
does not affect the vector V but changes the vector R to
–R. However, this does not change the ellipse defined by
V and R, and hence does not change the polarization of Z
except for chirality which is not considered in this paper
(see Introduction). Secondly, multiplying Z by eJb for any
arbitrary real 8 does not affect the relative phases of the
components and consequently does not affect the polar-
ization. Neither does the addition of an arbitrary multiple
of 27r to any one of the phases since doing so does not
change V or R.

Therefore, any two solutions to the phase and polar-
ization reconstruction problem may be considered the
same if the phases differ by a plus-minus sign, by the same
additive constant, or by arbitrary multiple of 27r. For the
remaining of this section, all ambiguities of this nature
are removed by requiring that the phase of the first com-
ponent of Z be zero, the phase of the second component
of Z be between O and m inclusively, and all other phases
be non-negative and less than 2T. A solution to (6) sat-
isfying these is said to be in standard form. The question
of uniqueness is, thus, about the existence of different
standard-form solutions to (6).

Letting Z+ denotes the transposed complex conjugate
of the vector Z and iV~ denote the transpose of the vector
N,., (6) becomes

B: = Z+ N,,,N:.Z, m=l,2, *”. ,k. (7)

Writing out (7) in full, one obtains, for m = 1, 2, s o
k,

) + z?z2(Nm)l(AJ?J2B:t = z:zI(NJ1(N,,, 1

+ . . . + ztzn(N,,,)I(Nm)n

+ z; z2(N,,,)2(Nfnh + “ “ “

+ . . . + Z; ZI(N,.),L(N,.)l

+ . . . + z: Z. (NJ, (N,.)., (8)

where (N~)P denotes the p th component of the vector N.,.
Of the terms on the right-hand side of (8), the vector Nn

is given, and z~zP is A;, the squared amplitude of the p th

component of Z, which is also given. Thus, only those
terms involving z~Zq with p # q contain the unknown
relative phases and hence are unknown. Since Re {z] Zq}

= Re {z~zP}, one may take the real part of both sides of
(8), bring known (given) terms to the left-hand side, and
rearrange to yield

—— z [2(NJP (N,.)ql Re {z~zq}. (9)
lsp<gsn

Let F~ denote the left-hand side. Let D,.,P~denote the fac-
tor in the square bracket, and let

$,, = Re {z~z,}, lsp<qsn. (lo)

Then, for each m = 1, 2, “ o . , k, (9) can be written

(11)

Finally, one can assemble the Fn’s into a k-tuple F, as-
semble the ~P~’sinto a n(n – 1) /2-tuple t, and let D be
a real matrix with k rows and n(rz – 1)/2 columns in-
dexed by pairs of integers pq with p < q. Let the element
of the matrix D located at row m and column pq be D~,P~.
Then, (11 ) can be written in matrix form

De = F. (12)

In order for (12) to have a unique solution, it is necessary
(but not sufficient) that the number k of rows of the matrix
D be equal to the number n(n – 1)/2 of columns. Thus,
it is necessary that

k=n(n–l)

2“
(13)

Furthermore, there are two possible cases: det (D) # O
or det (D) = O.

Case 1: det (D) # O

Since the determinant of D is not zero, D is invertible,
and (12) has a unique solution

~ =D-lF (14)

which uniquely determines the ~P~.Using the defining (10)
for the &P~,one obtains

t,, = Re {z$z~} = APA~ cos (qp – P,). (15)

Since a solution exists by hypothesis, the tP~ computed
from (14) must have a magnitude less than or equal to
APA~ (because otherwise (15) has no real solution for the
PP and p~, contrary to hypothesis). Therefore, (15) can
be solved to obtain

p~ – PP = tqw, where O S rl~P< 2T. (16)

By definition of the $P~,p is strictly less than q, and PI
= O by construction. Therefore, with p = 1, (16) gives

where

os?lq<27r.

On the surface, (17) suggests that there are 2“ -1 possible
combinations of phases, but this is not true because of the
constraints imposed by (16) as follows: For each pair (p,
q), one computes the left-hand-side of (16) using (17).
This produces the following possibilities:
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3. Pq = –qq, 9P = qp. Then p~ – PP = –(q~ + qP).

4. p~ = –qq, pP = –VP. Then P* – pP = –(q~ – VP),

A comparison of these with the right-hand-side of (16)
shows that either q~P =: (% + vP) or q~~ = Ivq – qPl but
not both. Therefore, a given value of q~flproduced from
(16) determines either Possibilities 1 and 4 or else Pos-
sibilities 2 and 3. In either case, the pP and p~ both change
sign. As discussed previously at the beginning of this sec-
tion, this sign change does not lead to different standard-
form solutions to the phase and polarization reconstruc-
tion problem.

Thus, if det (D) # 0, the reconstructed phases in stan-
dard form and the reconstructed polarization are unique.
Or equivalently, det (D) # O is a suficienr condition for
the uniqueness of the polarization and the uniqueness of
the phases in standard form.

Case 2: det @) = O.

Since det (D) = O, D is singular. Therefore, it has a
nonzero kernel with a dimension greater than zero. Let

Y1?Y23”””> y, be a basis for the kernel of D where s is
a positive integer less than or equal to n(n – 1)/2. The
solution to (12) is no longer unique, The general solution
has the following form:

t=t”+glyl+

where ~0 is a any solution
are arbitrary real numbers.
obtains

g2y’2 + “ “ “ + g,y$,

to (12), and gl, g2, . “ “ , g,
Proceeding as in Case 1, one

P9 – @p= +~qp(gl>gz, ‘ “ “ ,gs)

and

Pq = +Tql = *qq(glj g2, ‘ “ “ > g,)

for some real furtctiotzs qqp and qq of the gl, g2, “ “ o , g..

Reasoning exactly as in Case 1 shows that for a fixed set

Ofgl, gz, ““” , g,, the phases are unique up to a simul-

taneous sign change which leads to the same standard-

form solution. However, a different set of the g], gz,
. . . , g, would clearly produce a diflerent standard-form
solution.

Thus, if det (D) = 0, the reconstructed phases in stan-
dard form and the reconstructed polarization are not
unique. Or equivalently, det (D) # O is a necessary con-
dition for the uniqueness of the polarization and the
uniqueness of the phases in standard form.

The conclusions of Case 1 and Case 2 together state
that det (D) # O is a necessary and suficient condition
for the uniqueness of the reconstructed polarization and
the uniqueness of the reconstructed phases in standard
form, As the directions NI, Nz, “ . “ , N~ are used in com-
puting the matrix D, the condition above is a necessary
and sufficient condition for choosing these directions along
which additional amplitude measurements are taken.

Finally, for an arbitrary finite positive integer n, it is
always possible to find the direction vectors N1, N2,
. . . >N~, where k = n(n – 1)/2, such that the matrix D

has nonzero determinant because one can always pick
those vectors as follows. Because k = n(n – 1)/2, one
can index these vectors by a double subscript (p, q) where
1 s p < q s n, Let NPqbe chosen to be the vector whose
p th and qth components are both equal to (1 /&) andl all
other components are zero. Computing the elements Dfl,,P~
of matrix D using the above vectors NPq is described pm-e-
viously, one can verify that the matrix D is the k-by-k
identity matrix whose determinant is 1. Therefore, by the
necessary and sufficient condition for uniqueness, the
phase and polarization reconstruction using these direc-
tion vectors will be unique.

The explicit construction of the vectors Np~ shows that
the necessary and sufficient condition det D # O can ac-
tually be satisfied.

V. EXAMIPLES OF THE PHASE AND POLARIZATION

RECONSTRUCTION AND ITS UNIQUENESS

Although the following results were obtained by n~on-
linear minimization using the standard method of gradient
[7], the details of the minimization are not too important
for the purposes of this paper and will be described only
briefly. The partial derivatives are computed using central
differencing with the provision for ‘saddle points and nnin-
ima. The step size in the direction of the negative of the
gradient in the space of phase angles is initially one de-
gree. This step size is halved each time the scalar product
of the gradient at the m step with the gradient at the (ml –
1) step is negative, which signals that the local minimum
has been approached and passed. A minimum is obtained
when the Euclidean length of the gradient vector is IIess
than 1.0 X 10-5 times the value of the largest given iim-

plitude. The starting guesses for the phase angles in de-
grees are PI := O, Pz = 10, and p~ = 10. If these starting
guesses do not produce a residual of less than 0.1, then
the minimization starts over with new guesses, where 92
and p~ are increased by 45 degrees. This is repeated 6
more times if necessary.

Example 1: In three dimensions, n = 3, n(n + 1)/2
= 6, and one needs a total of six amplitude measure-
ments: three measurements along the axes of an orthogo-
nal coordinate system, and three more in three directions
specified by unit vectors N1, N2, and N3. Let these unit
vectors be as follows:

‘1=0‘2=ON3=H
That is, these vectors are obtained by rotating the old co-
ordinate axes by 60 degrees around the vector (1, 1, 1),
counter-clockwise if viewed in the direction from (II, 1,
1) to the origin.

To determine whether these choices of the three addi-
tional directions will lead to uniqueness of the phase and
polarization reconstruction, one applies the necessary and
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sufficient conditions derived in the previous section. The
matrix D is

which has
larization
along the

\-l 2 -1/

zero determinant. Therefore, any phase and pr-
econstruction using amplitude measurements
N,, Nz, and Nq directions will not be unique.

This- is confirmed by the following numerical calcula-
tions:

Let the amplitude measurements be 6, 4, 5, along an
orthogonal coordinate system, and let the additional am-
plitude measurements along NI, N?, and N~ be 5.8897,
5.2202, and 3.8808. The reconstruction using these six
numbers produces two different standard-form solutions:
one with phases in degrees being O, 45.0000, 90.0000,
and the other, O, 104.2940, and 220.2520.

Example 2.’ At a particular point in three dimensional
space, a monochromatic elliptically polarized electromag-
netic plane wave is moving with the phase-velocity vector
in the direction (1, 1, 1). Suppose that the semi-major axis
of the ellipse is in the direction (1, O, – 1), where the
amplitude of the electric field is 5 millivolts/meter, and
the semi-minor axis is in the direction (– 1, 2, – 1), where
the amplitude is 3 millivolts/meter. (This wave is easily
physically realizable by appropriately placing and ori-
ented two mutually perpendicular sinusoidally-driven di-
pole antennas with driving amplitudes in the ratio 5 to 3
and 90 degrees out of phase).

By an elementary computation, the electric field is
found to have the following amplitudes:

A, = 3.742 mV/m,

AY = 2.449 mV/m, and

AZ = 3.742 mV/m.

Compared to the x-component, the y-component has a
phase lead of 109.1 degrees, and the z-component has a
phase lead of 218.2 degrees. Along three additional di-
rections specified by the vectors

the electric field has amplitudes

BI = 2.646 mV/m,

Bz = 1.732 mV/m, and

B3 = 2.646 mV/m.

To illustrate the method of relative-phase reconstruction
in this paper, we will use only the amplitude information
given above and derive everything else.

First, from the three vectors N,, Nz, and N~, one com-
putes the matrix D and finds that the determinant of D is
nonzero. The necessary and sufficient condition in Section
IV states that the reconstructed phases in standard form
will be unique. Next, using the six amplitudes along the
x-, y-, and z-directions as well as along the three addi-
tional directions, the method of non-linear optimization
described previously yields, O, 109.1, and 218.2 degrees
for the relative phases in standard form among the carte-
sian components of the electric field. Using these phases,
the given amplitudes, and (1) and (2), one finds that the
electric field reaches a maximum of 5 millivolts /meter in
the direction of the vector V = (1, O, – 1), and a mini-
mum of 3 millivolts/meter in the direction of the vector
R = (– 1, 2, – 1). The cross-product of V and R gives the
direction, up to a plus or minus sign, of the phase veloc-
ity, which is +(1, 1, 1). Finally, the knowledge of the
location of the source of the electromagnetic wave re-
moves the sign ambiguity.

A comparison with the ‘‘given” information in the first
two paragraphs of this example shows that from only the
six amplitudes, the method of relative-phase reconstruc-
tion has correctly produced all other information, includ-
ing the correct relative phases.

VI. CONCLUSION

From only amplitude measurements, it is possible to
reconstruct uniquely the phases in standard form and the
polarization ellipse of a vector whose components are
sinusoidally time-varying in an n-dimensional space where
n is a finite integer greater than 1. This unique reconstmc-
tion will require at most n(n + 1)/2 amplitude measure-
ments, n of which are along the axes of an orthogonal
coordinate system. The remaining n(n – 1)/2 amplitude
measurements are along n(n — 1)/2 additional directions
which must satisfy a necessary and sufficient condition in
order that the reconstructed phases in standard form and
the reconstructed polarization ellipse are unique. These
additional directions can always be found to satisfy this
condition for any finite positive integer n greater than 1.
The special case where n = 3 is applicable to the relative
phase and polarization reconstructions of the electromag-
netic field from amplitude measurements.
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